Pest control methods heard through the grapevine

Rodrigo Krugner Research Entomologist

United States Department of Agriculture Agricultural Research Service San Joaquin Valley Agricultural Science Center Parlier, California

"California Vine Disease": First detected in Anaheim in 1884 and in the San Joaquin Valley in 1917

Pierce's disease costs California US\$104 million per year (Tumber et al. 2014. Calif. Agric. 68, 20-29)

Xylella fastidiosa Wells et al.

SE 19-Apr-05 WD 7.2mm 15.0kV x3.0k 10um Photo: Dennis Margosan, USDA

World Distribution of Xylella fastidiosa

Napa County (North Coast) – Blue-green sharpshooter

Graphocephala atropunctata (Signoret)

http://farm2.static.flickr.com

Photo: Jack Clark, UCCE

GLASSY-WINGED SHARPSHOOTER (GWSS)

0.5 cm

Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae)

World Distribution of the GWSS

GWSS Distribution in California

🕄 gaology.com

Mymarid egg parasitoids of GWSSNativeExotic

Cosmocomoidea ashmeadi

C. triguttata

C. fasciata

C. walkerjonesi

Anagrus epos Photos: UC-Riverside, CDFA

GWSS detections by yellow sticky traps in Kern Co. Zone 3 (Southern Central Valley) Jun 21 – July 4, 2015

Southern Central Valley, California

Southern Central Valley, California

Change in vector = (birth + immigration) – (death + emigration) population density

GWSS mating pair

GWSS Reproduction

Fertilized eggs

Non-fertilized eggs

K De

Mechanisms of Mating Disruption (Miller and Gut 2015)

Production, transmission, and reception of vibrational signals

Signals produced by abdominal vibrations (Tremulation).

ing (or flexural) waves

200,000 insect species have been estimated to use substrate vibrations alone or combined with other forms of signalling (Cocroft and Rodriguez 2005. Bioscience 55:323–334.).

Organs (**subgenual** and **joint chordotonal**) in the legs presumably function as substrate-vibration detectors.

Development of mating disruption methods

3-step methodology:

- 1. Description...of GWSS
- 2. Identification...of disruption signal
- 3. Execution...of mating disruption

GWSS Signals

Female

Male

Ethogram of events in GWSS pair formation

Mate Selection Behavior in GWSS

Nieri et al. 2017, Gordon et al. manuscript in preparation.

GWSS Communication: 1. Description

GWSS male-male rivalry

Time (seconds)

GWSS Communication: 2. Identification

Signals

- White noise
- Female noise
- Female signals

GWSS Communication: 2. Identification

Gordon et al. 2017

GWSS Communication: 2. Identification

Signals

- White Noise \rightarrow High Energy
- Female Signals
 - \rightarrow 3% mated
- Female Noise

1 min 600Hz **3. Execution** Female signals with reduced gap between calls.

Slide provided by Vittorio Veronelli

Signal output measured at:

- Wire
- Cane touching wire
- Cane not touching wire
- Trunk
- Cane with insects

Female signal Silent (control)

TREATMENT	Number of insect pairs	Number of mated pairs	Mean percentage of mated pairs
Silence	134	28	21.5
F26s	134	1	0.6
$(\chi^2 = 35.15, P < 0.0001)$			

Next Steps

- Distance
- Energy
- Vineyard trellis
- Other crops
- Other pests

Vibrational control of GWSS and ACP in citrus orchards

Fig. 1. Percentages of psyllids remaining unmated in disruption (solid line) and control (dashed line) bioassays during the 1-h test period.

(Lujo et al., 2016. J. Econ. Entomol. 109: 2373-2379)

FUTURE WORK: Identify disruptive signals for other grapevine pests

Western grape leafhopper Erythroneura elegantula Osborne

UC Statewide IPM Project © 2000 Regents, University of California

Variegated leafhopper Erasmoneura variabilis Beamer

Virginia creeper leafhopper Erythroneura ziczac Walsh

Blue-green sharpshooter G. atropunctata (Signoret)

C Statewide IPM Project) 2000 Regents, University of California

http://farm2.static.flickr.com

Blue-green sharpshooter Graphocephala atropunctata (Signoret)

Time (seconds)

Summary

- Mating communication of many grapevine pests rely heavily on the exchange of substrate-borne vibrational signals.
- GWSS mating communication signals were described for identification of candidate disruptive signals.
- Disruptive potential of candidate vibrational signals demonstrated in laboratory and validated under field conditions.
- Data support development of vibrational mating disruption as a novel method to control GWSS populations.

Acknowledgements

Joanna Ochoa Matt Escoto Melissa Fujioka Melissa Wilson Nestor Sandoval **Rachele Nieri Rosa Perez** Shira Gordon Theresa De La Torre Valerio Mazzoni **PD/GWSS Board** CA Table Grape Commission

Project title: Identification of Novel Management Strategies for Key Pests and Pathogens of Grapevine with Emphasis on the *Xylella fastidiosa* (*Xf*) Pathosystem. **Project #** 2034-22000-012-00D

Project scientists: **Rodrigo Krugner** Elaine A. Backus Lindsey P. Burbank Jianchi Chen Hong Lin Mark S. Sisterson Drake C. Stenger Christopher M. Wallis

